Modular decomposition of transitive graphs and transitively orienting their complements
نویسنده
چکیده
The modular decomposition of a graph is a canonical representation of its modules. Algorithms for computing the modular decomposition of directed and undirected graphs differ significantly, with the undirected case being simpler, and algorithms for directed graphs often work by reducing the problem to decomposing undirected graphs. In this paper we show that transitive acyclic digraphs have the same strong modules as their undirected versions. This simplifies reduction for transitive digraphs, requiring only the computation of strongly connected components.
منابع مشابه
On the eigenvalues of normal edge-transitive Cayley graphs
A graph $Gamma$ is said to be vertex-transitive or edge- transitive if the automorphism group of $Gamma$ acts transitively on $V(Gamma)$ or $E(Gamma)$, respectively. Let $Gamma=Cay(G,S)$ be a Cayley graph on $G$ relative to $S$. Then, $Gamma$ is said to be normal edge-transitive, if $N_{Aut(Gamma)}(G)$ acts transitively on edges. In this paper, the eigenvalues of normal edge-tra...
متن کاملModular decomposition and transitive orientation
A module of an undirected graph is a set X of nodes such for each node x not in X , either every member of X is adjacent to x, or no member of X is adjacent to x. There is a canonical linear-space representation for the modules of a graph, called the modular decomposition. Closely related to modular decomposition is the transitive orientation problem, which is the problem of assigning a directi...
متن کاملTransitive Decompositions of Graphs and Their Links with Geometry and Origami
A transitive decomposition of a graph is a partition of the edge or arc set giving a set of subgraphs which are preserved and permuted transitively by a group of automorphisms of the graph. In this paper we give some background to the study of transitive decompositions and highlight a connection with partial linear spaces. We then describe a simple method for constructing transitive decompositi...
متن کاملProduct constructions for transitive decompositions of graphs
A decomposition of a graph is a partition of the edge set, giving a set of subgraphs. A transitive decomposition is a decomposition which is highly symmetrical, in the sense that the subgraphs are preserved and transitively permuted by a group of automorphisms of the graph. This paper describes some ‘product’ constructions for transitive decompositions of graphs, and shows how these may be used...
متن کاملPrimitive decompositions of Johnson graphs
A transitive decomposition of a graph is a partition of the edge set together with a group of automorphisms which transitively permutes the parts. In this paper we determine all transitive decompositions of the Johnson graphs such that the group preserving the partition is arc-transitive and acts primitively on the parts.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1710.04333 شماره
صفحات -
تاریخ انتشار 2017